Dynamics of delayed neural field models in two-dimensional spatial domains

نویسندگان

چکیده

Delayed neural field models can be viewed as a dynamical system in an appropriate functional analytic setting. On two dimensional rectangular space domains, and for special class of connectivity delay functions, we describe the spectral properties linearized equation. We transform characteristic integral equation differential (DDE) into linear partial (PDE) with boundary conditions. demonstrate that finding eigenvalues eigenvectors DDE is equivalent obtaining nontrivial solutions this value problem (BVP). When kernel consists single exponential, construct basis BVP forms complete set L2. This gives characterization spectrum used to solution resolvent problem. As application give example Hopf bifurcation compute first Lyapunov coefficient.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Two-Dimensional Discrete-Time Delayed Hopfield Neural Networks

This chapter is devoted to the analysis of the complex dynamics exhibited by twodimensional discrete-time delayed Hopfield-type neural networks. Since the pioneering work of (Hopfield, 1982; Tank & Hopfield, 1986), the dynamics of continuous-time Hopfield neural networks have been thoroughly analyzed. In implementing the continuous-time neural networks for practical problems such as image proce...

متن کامل

Bumps in simple two-dimensional neural field models

Neural field models first appeared in the 50’s, but the theory really took off in the 70’s with the works of Wilson and Cowan [11, 12] and Amari [2, 1]. Neural fields are continuous networks of interacting neural masses, describing the dynamics of the cortical tissue at the population level. In this report, we study homogeneous stationary solutions (i.e independent of the spatial variable) and ...

متن کامل

Dynamics of Neural Field Models

In recent years significant progress has been made in understanding the brain electrodynamics using mathematical techniques. At the level of neural tissue brain cortex could be represented as a two-dimensional sheet of densely interconnected neurons. A suitable mathematical description in this context are integro-differential nonlinear equations called neural field models. We study the capabili...

متن کامل

infinite dimensional garch models

مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...

15 صفحه اول

Interface dynamics in planar neural field models

Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2022.02.002